January 30, 2010

Climate change, invasives and extinction in Thoreau's Woods

...I walk encouraged between the tufts of Purple Wood-Grass, over the sandy fields, and along the edge of the Shrub-Oaks, glad to recognize these simple contemporaries. With thoughts cutting a broad swathe I “get” them, with horse-raking thoughts I gather them into windrows. The fine-eared poet may hear the whetting of my scythe. These two were almost the first grasses that I learned to distinguish, for I had not known by how many friends I was surrounded — I had seen them simply as grasses standing.
From "Autumnal Tints" by Henry David Thoreau The Atlantic Monthly October 1862. In this photo from 1908, the rocks mark the location of his cabin in relation to Walden Pond.

ResearchBlogging.orgAround 1851, after completing the retreat that inspired Walden, Thoreau had taken his interest in nature and made it a more scientific part of his work routine, walking the woods and fields around Concord, Massachusetts recording his observations of plants and animals through the seasons in the area. He paid particularly close attention to the flowering days of local plants, which has been of interest to the scientific community of late.

The data that Thoreau collected is meticulous enough to be considered a viable, useful data source by modern researchers. Thoreau's records of the area's wildlife have been carried on by others, providing us with over 150 years of data regarding the phenology of Northeast American flora; that is, life cycle events like fruiting or flowering days or migration and how these events are influenced by the seasons and the climate. Simply put, after 150 years of suffering the effects of disturbance and climate change, the natural communities of Concord are not quite the forests and fields of yore.

In the past two years or so there have been a handful of studies based on the data set that Thoreau started. In February 2008, Rushing and Primack published a study in Ecology discussing how global warming had affected flowering times in Concord. The average temperature has increased in the area by approximately 2.4° C since 1852, which has, on average, pushed flowering times up by 7 days since Thoreau's time. It was also observed that two non-native plants common in the Northeast, St. John’s wort (Hypericum perforatum) and highbush blueberry (Vaccinium corymbosum), could be useful as bioindicators of the future effects of climate change due to how quickly they responded to the changing temperatures; their mean first flowering days shifted forward approximately three days per 1° C increase in temperature.*

Later that year, Willis et al. published a study in PNAS using the data set started by Thoreau, this time looking at the data from a phylogenetic perspective. It was shown that flowering time was strongly correlated with abundance and that the species seemingly incapable of a relatively quick response to the change in climate were declining. The pattern is phylogenetically selective, strong evidence of climate change as an extinction risk.

In the near term, this pattern of phylogenetic selectivity is likely to have an accelerated impact on the loss of species diversity: groups of closely related species are being selectively trimmed from the Tree of Life, rather than individual species being randomly pruned from its tips.

A more recent study from Willis and his colleagues published in PLoSONE takes a look at how these flowering times differ between native and non-native species, determining how each has been able to respond over the past 150 years. It was previously demonstrated that the non-natives St. John's wort and highbush blueberry have been apt conformers to the changing climate, but neither are considered invasive.

The researchers placed the Concord flora in four comparative categories for analysis - Native vs. non-native, Native vs. non-native, non-invasive, Native vs. invasive, Non-native, non-invasive vs. invasive - and examined phenologically and ecologically important traits such as plant weight at maturity and flower diameter.


The results are remarkable, and reveal another layer of danger to native plants in the area. In general, non-natives were shown to adapt to changing temperatures better than the natives. Invasive species are particularly apt; they flower 11 days earlier than natives and 9 days earlier than the non-native, non-invasives. The results of the study also backed up earlier evidence that abundance was tied to earlier flowering days; invasives displayed greater relative abundance than the natives and non-native, non-invasives. But in general, non-natives in the area are equipped with certain traits that better prepare them for changes in climate.

Already the Concord area has lost about 27 percent of the species that once inhabited Thoreau's woods and another 36 percent have become incredibly rare. If the projections of 1.1° - 6.4° C increases in average temperature over the next century are correct, this trend will continue, progressively selecting traits that promote invasive growth and pushing natives that much closer to extinction.

*It's not always a boon for the flowering days of plants to be pushed forward in the season. If flowering too early, they may miss their pollinators or succumb to a late frost.

Willis, C., Ruhfel, B., Primack, R., Miller-Rushing, A., Losos, J., & Davis, C. (2010). Favorable Climate Change Response Explains Non-Native Species' Success in Thoreau's Woods PLoS ONE, 5 (1) DOI: 10.1371/journal.pone.0008878

Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, & Davis CC (2008). Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105 (44), 17029-33 PMID: 18955707

Miller-Rushing AJ, & Primack RB (2008). Global warming and flowering times in Thoreau's Concord: a community perspective. Ecology, 89 (2), 332-41 PMID: 18409423

No comments:

Post a Comment